TU2D-2

Mono-Modal Waveguides Filled with a Pair of Paraliel Epsilon-
Negative (ENG) and Mu-Negative (MNG) Metamaterial Layers

Andrea Ala"? and Nader ]E*‘,ngheta1

'University of Pennsylvania, Department of Electrical and Systems Engineering,
Philadelphia, Pennsylvania 19104-6390, U.S.A.
2Universita di Roma Tre, Department of Applied Electronics,
via della Vasca Navale, 84 ~ 00146 — Roma, Italy
E-mail: andreaal@ee.upenn.edu, engheta@ee upenn.edu

URL: http://www ee.upenn.edu/~engheta/

Abstract — Here we analyze guided wave propagation in
a parallel-plate waveguide filled with a pair of parallel
lossless slabs; one possessing negative real permittivity but
positive real permeability, and the other with negative real
permeability and positive real permittivity, in the range of
frequency of interest. It is shown that such a waveguide can
support only a single propagating mode, essentially
independent of the total thickness of this structure.
Furthermore, this waveguide can still possess a propagating
mode even when its thickness is very small. Field distribution
and dispersion relations in such a mono-modal waveguide are
obtained and discussed with physical insights and intuitive
description for the mathematical findings.

1. INTRODUCTION

The electromagnetics of complex media has been the
subject of interest for many researchers in the past several
decades. In recent years, the topic of metamaterials, ie.,
artificial materials synthesized by embedding specific
inclusions in host media, has increasingly received a
renewed attention due to the interest in man-made
complex materials that may possess negative real
permittivity and permeability in a certain range of
frequency. In 1967, Veselago postulated theoretically a
material in which both permittivity and permeability were
assumed to have negative real values, and he analyzed
plane wave propagation in such a medium, which he
called “left-handed (I.LH)” medium [1]. According to his
analysis, in such a “double-negative (DNG)” [2] medium
the Poynting vector of a plane wave is antiparallel with its
phase velocity. In recent years, Smith, Schultz and Shelby
from UC San Diego [3], inspired by the work of Pendry
{[4]), constructed such a LH composite medium in the
microwave regime, by arranging arrays of small metallic
wires and split ring resonators [3]. Various aspects of this
class of metamaterials are now being studied by several
groups worldwide, and many ideas and suggestions for
potential applications of these media have been mentioned.
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As one such idea, we theoretically suggested the
possibility of having thin, subwavelength cavity resonators
in which a layer of the DNG medium is paired with a layer
of conventional material (i.e., a “double-positive (DPS)”
medium) [5]-[6]. By exploiting the antiparallel nature of
the phase velocity and Poynting vectors in a DNG slab, we
found possibility of resonant modes and guided waves in
very thin parallel-plate structures containing such a DNG-
DPS bilayer structures [5]-[6].

The materials in which only one of the material
parameters has nepative value have also been of interest.
These “single-negative (SNG)” media include the epsilon-
negative (ENG) media, where the real part of the

permittivity is negative but the real permeability is "~

positive, and the mu-negative (MNG) media, in which real
pari of permeability is negative but real permittivity is
positive. For instance, the idea of constructing an effective
LH medium by having layers of SNG media has been
explored in [7]. We have also analyzed the wave
interaction with a pair of juxtaposed ENG and MNG slabs,
showing interesting properties such as resonance, complete
tunneling, zero reflection and ftransparency [8]. Using
appropriate transmission-line model for the ENG-MNG
paired layers, we. have explained the unusual field
behavior in these paired structures, and have shown that
such a lossless pair may exhibit resonance phenomena,
even though each slab alone does not manifest such an
effect [8].

As a further contribution in this topic, here we present
the results of our theoretical analysis on possibility of
achieving mono-modal propagation in an arbitrarily thick
parallel-plate  waveguide containing an ENG-MNG
parallel bilayered stack. We also show that such a guided-
wave structure has no cut-off thickness.

As an aside, it is important to note that passive
metamaterials with negative permittivity or negative
permeability are inherently dispersive. So although € or
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¢ of such media can be negative at a certain band of
frequency, these parameters do vary with frequency. Thus
in general one should take into account the frequency
dependence of such material parameters. However, this
would be beyond the scope of the present work, where we
want to emphasize the salient features of this type of
waveguides without resorting to an unnecessary
complexity. Therefore, for the remainder of this paper, we
assume that we operate at a single frequency for which the
material parameters are given and fixed.

I. GEOMETRY OF THE ENG-MNG WAVEGUIDE

Let us consider a parallel-plate waveguide, made of two
infinitely extent perfectly conducting plates separated by
the distance d =d, +d,, as shown in Fig. 1. This
waveguide is filled with two parallel slabs of
metamaterials; one being a lossless ENG material
(g <0, >0) with thickness d, and the other being a
lossless MNG material (£, >0, u, <0) with thickness
d,. The Cartesian coordinate system (x,y,z) is shown in
Fig. 1. ’
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Fig. 1. Geometry of the parallel-plate waveguide filled with
two paralle] slabs, one being a lossless epsilon-negative (ENG)
medium and the other being a lossless mu-negative (MNG)
medium,
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where E, is the mode amplitude, determined by the

excitation, and k, = |k + B with k2= @ue <0
{(since we <0 in ENG and MNG slabs) for i=1,2.
Satisfying the boundary conditions at the interface y =0,

we find the following dispersion relation for the TE case:
B U
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{11 2
The corresponding dispersion relation for the TM * case
can be found as:
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The above dispersion relations are of course general and
valid for any two slabs with arbitrary complex values for
the material parameters. For the case at hand where one
slab is lossless ENG and the other is lossless MNG,
however, our aim is to find the conditions under which we
obtain real-valued solutions for the longitadinal wave
number f . (In the foltowing we refer to the TE excitation
and the superscript TE is hereto after dropped.)

I1. DISPERSION CHARACTERISTICS

Rewriting Eq. (3) more explicitly for the ENG-MNG
waveguide of Fig. 1, we obtain:
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Due to the monotonic behavior and limited variation of
the hyperbolic tangent functions with real argument in Eq.
(5), we expect to observe interesting dispersion
characteristics. First, we notice that if for the TE case 1,
and g, have the same sign, Eq. (5) cannot have any real-
valued solution for B . This is not surprising, since for
the case of the ENG-ENG pair or the MNG-MNG pair,
where t, and g, have the same sign, the wave number in
the bulk paired materials is always imaginary. However,
when we have a so-called “conjugale” pair, i.e., a pair of
ENG and MNG slabs, in this waveguide, both sides of Eq.
(5) have the same sign, and thus it is possible to have a
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real-valued solution for [ from Eq. (5). This is
consistent with our previous findings on free-space plane
wave interaction with a pair of ENG-MNG slabs [8], in
which we have shown the interesting “resonance”
behavior between the two slabs. In order to gain some
physical insights into the possible real-valued solutions of
Eg. (5), let us assume that the parameters of the ENG and
MNG slabs, ie., g, g, Hd,, and g, are given at the
frequency of interest, and that the thickness of the ENG
slab d, is known and fixed. We then wish to find d, such
that B attains a specific real value. This can be found by
rearranging Eq. (5) as

[a.n.hii lﬂ'\l \”k2|2+-32 tanh
i + B2
\”kzr +8°

Obviously, a physical solution for d, exists only if the
argument of the inverse hyperbolic tangent function in the
above equation is less than unity. But when this condition
is fuifiiled, the solution for d, is unique due to the
monotonic (non-periodic) behavior of the hyperbolic
tangent function. Specifically, for a given set of
parameters for the ENG and MNG slabs and a fixed d|,
there may only be one value for d, if a specific real valve
for f is desired. Furthermore, the field components vary
as hyperbolic sinusoidal functions as shown in Eqgs. (1)
and (2), and they are mostly concentrated around the
ENG-MNG interface. These features are in sharp contrast
with those of propagating modes in a conventional
waveguide filled with a pair of DPS slabs or a waveguide
filled with the DPS-DNG paired slabs {5],[6], where one
can have many solutions for d, due to the multi-
valuedness/periodic behavior of the interior fields on the
transverse plane of the waveguide.

Figure 2 presents the TE dispersion diagram of such an
ENG-MNG waveguide for two different sets of material
parameters. One striking feature of these diagrams, as

(T
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already underlined, is the single-valuedness of f§ for &

given set of d, and d,, unlike the case of ordinary
waveguides where one may find multiple real values for
wave number for a given dimension of a waveguide and
the corresponding figure would be multiple-branched. In
order to discuss these figures, we first analyze some
special limits. At one exireme, let us assume 4, and d,
to be very large. Eq. (5) will then be simplified as

bl |
Jkf+8> k[ +8?

which is independent of the thicknesses of the slabs and
has the following solutions for B :
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Fig. 2. Dispersion diagram presenting the relationship among
d,, d,, and real-valued J3, as described in Eq. (5), for two sets
of parameters at a fixed frequency of interest: (a) when
g =5, =2, e=26, W, =-H,, and (b) when

£ =18, 4=y, & =36, th=-24,.
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With proper choices of material parameters, # can be a

real-valued quantity, and then it represents the wave
number of the Zenneck wave that can exist along the
interface of the two semi-infinite lossless ENG and MNG
media. This can be seen in Fig. 2b, in which the material
parameters are chosen such that the Zenneck wave can
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exist. We note that for the limit of very large d, and d,,
the wavenumber f is shown to approach the value given
in Eq. (8). It is interesting to note that this expression is
identical to the corresponding wave number we addressed
in [9] for the Zenneck wave along a DPS-DNG interface.
Another limit is for the case of thin layers. If the
thicknesses d, and d, are taken to be very small, Eq. {5}

will be expressed approximately as

dy 1d, = || /|, &)

s

an expression that is effectively independent of fA. In
such a limit, the wave number of the guided mode can
essentially be any real value, as can be seen in Figs. 2a
and 2b around the region where 4, 0 and 4, O0.In
such a waveguide, no matter how thin these layers are (as
long as they satisfy Eq. (9)), one (and only one)
propagating mode can exist. In other words, this
waveguide does not have a “cut-off” thickness below
which no mode can propagate, analogously to a DPS-
DNG thin cavity [3].

Another interesting feature to note in Fig. 2 is that for
B =0, which is the case of a 1-dimensional cavity filled
with the ENG-MNG pair, if 4| is chosen to be large, d,
will approach a finite limit given as

g f e,

HE d
Depending on the choice of the material parameters, for a
fixed d,, as B increases from zero the thickness d, either
becomes greater than the value shown in Eq. (10) or less
than it, as can be seen in Figs. 2a and 2b, respectively.
Moreover, it is important to underline that the mono-
modal characteristics of such a waveguide is strikingly

independent of its total thickness. For instance, from Fig.
2a, we can see that for a given § and a specific allowable

(10)
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d,, thickness d, can be chosen arbitrarily large, resulting

in a thick waveguide. But still one single mode is
propagating in such a thick waveguide. This feature, not
present in a conventional waveguide, for which increasing
the thickness leads to the possibility of having multiple
propagating modes, can be potentially employed for some
applications. Finally, one notes that in the dispersion
diagrams in Fig. 2b there is a curved line beyond which
the diagram “stops”. This is due to the fact that beyond
this boundary, the real solution for Eq. {6} does not exist.

V. CONCLUSION

COur analysis has shown that a parallel-plate waveguide
filled with a pair of parallel layers of lossless epsilon-
negative and mu-negative materials may possess only a
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single propagating mode with essentially no restriction on
the waveguide thickness. So a thick waveguide of this
kind is always mono-modal, contrary to a conventional
waveguide. In the limit of small thickness, this waveguide
may always have a propagating mode, thus has no cut-off
thickness. '

Such a waveguide may find interesting applications in
design of single-mode fibers with less restriction and more
flexibility on the fiber thickness.
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