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Abstract - Here we analyze guided wave propagation in 
a parallel-plate waveguide filled with a pair of parallel 
Iossless slabs; one possessing negative real permittivity but 
positive real permeability, and the other with negative real 
permeability and positive real permittivity, in the range of 
frequency of interest. It is shown that such a waveguide can 
support only a single propagating mode, essentially 
independent of the total thickness of this structure. 
Furthermore, this waveguide can still possess a propagating 
mode even when its thickness is very small. Field distribution 
and dispersion relations in such a mono-modal waveguide are 
obtained and discussed with physical insights and intuitive 
description for the mathematical findings. 

I. INTRODUCTlON 

The electromagnetics of complex media has been the 
subject of interest for many researchers in the past several 
decades. In recent years, the topic of metamaterials, i.e., 
artificial materials synthesized by embedding specific 
inclusions in host media, has increasingly received a 
renewed attention due to the interest in man-made 
complex materials that may possess negative real 
petmittivity and permeability in a certain range of 
frequency. In 1967, Veselago postulated theoretically a 
material in which both permittivity and permeability were 
assumed to have negative real values, and he analyzed 
plane wave propagation in such a medium, which he 
called “left-handed (LH)” medium [l]. According to his 
analysis, in such a “double-negative (DNG)” [Z] medium 
the Poynting vector of a plane wave is antiparallel with its 
phase velocity. In recent years, Smith, Schultz and Shelby 
from UC San Diego [3], inspired by the work of Pendry 
([4]), constructed such a LH composite medium in the 
microwave regime, by arranging arrays of small metallic 
wires and split ring resonators [3]. Various aspects of this 
class of m&materials are now being studied by several 
groups worldwide, and many ideas and suggestions for 
potential applications of these media have been mentioned. 

As one such idea, we theoretically suggested the 
possibility of having thin, subwavelength cavity resonators 
in which a layer of the DNG medium is paired with a layer 
of conventional material (i.e., a “double-positive (DPS)” 
medium) [5]-[6]. By exploiting the antiparallel nature of 
the phase velocity and Poynting vectors in a DNG slab, we 
found possibility of resonant modes and guided waves in 
very thin parallel-plate structures containing such a DNG- 
DPS bilayer structures [5]-[6]. 

The materials in which only one of the material II 

parameters has negative value have also been of interest. L 

These “single-negative (SNG)” media include the epsilon- 
negative (ENG) media, where the real part of the 
permittivity is negative but the real permeability is ‘. 
positive, and the mu-negative (MNG) media, in which real 
part of permeability is negative but real permittivity is 
positive.. For instance, the idea of constructing an effective 
LH medium by having layers of SNG media has been 
explored in [7]. We have also analyzed the wave 
interaction with a pair of juxtaposed ENG and MNG slabs, 
showing interesting properties such as resonance, complete 
tunneling, zero reflection and transparency [S]. Using 
appropriate transmission-line model for the ENG-MNG 
paired layers, we have explained the unusual field 
behavior in these paired structures, and have shown that 
such a lossless pair may exhibit resonance phenomena, 
even though each slab alone does not manifest such an 
effect [8]. 

As a further contribution in this topic, here we present 
the results of our theoretical analysis on possibility of 
achieving mono-modal propagation in an arbitrarily thick 
parallel-plate waveguide containing an ENG-MNG 
parallel bilayered stack. We also show that such a guided- 
wave structure has no cut-off thickness. 

As an aside, it is important to note that passive 
metamatexials with negative pamittivity or negative 
permeability are inherently dispersive. So although E or 
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p of such media can be negative at a certain band of 
frequency, these parameters do vary with frequency. Thus 
in general one should take into account the frequency 
dependence of such material parameters. However, this 
would be beyond the scope of the present work, where we 
want to emphasize the salient features of this type of 
waveguides without resorting to an urmecessary 
complexity. Therefore, for the remainder of this paper, we 
assume that we operate at a sin& frequency for which the 
material parameters are given and fixed. 

I. GEOMETRY OF THE ENG-h4NG WAVEGUIDE 

Let us consider a parallel-plate waveguide, made of two 
infinitely extent perfectly conducting plates separated by 
the distance d = d, + d2, as shown in Fig. 1. This 
waveguide is filled with two parallel slabs of 
m&materials; one being a lossless ENG material 
(E, < 0, JJ, > 0 ) with thickness d, and the other being a 
lossless MG material (E, > 0, flz < 0) with thickness 
d, The Cartesian coordinate system (x. y, z) is shown in 
Fig. 1. 

Fig. 1. Geometry of the parallel-plate waveguide filled with 
two parallel slabs, one being a lossless epsilon-negative (ENG) 
medium and tbe other being a lossless mu-negative (MNG) 
medium. 

For the TE” mode excitation, the following expressions 
for the fields can be written: 

Binh(k,Td,)sinh k,:” (dl - y) 
Jp = 2 E, e-lP, o Y>O 

@nh(kyd,)sinh k,?f(y+d,) Y<O 

(1) 

-j p+-‘B”= ~lsinb(k~d,)sinh k? (d, - y) 

0 &;lsinh(kyd,)sinh kF(y+d,) 

(74 

where E0 is the mode amplitude, determined by the 

excitation, and k, =/p with k: =&fi,&, ~0 

(since KE, <O in ENG and MNG slabs) for i= 1,2. 

Satisfying the boundary conditions at the interface y = 0, 

we find the following dispersion relation for the TE case: 

+nh(k~d,)=-$tmh(k~d,), (3) 
<I tz 

The corresponding dispersion relation for the TM’ case 
can be found as: 

+%h(k;“d,)= -+coth(k:“d,). (4) 
II 0 

The above dispersion relations are of course general and 
valid for any two slabs with arbitrary complex values for 
the material parameters. For the case at hand where one 
slab is lossless ENG and the other is lossless MNG, 
however, our aim is to find the conditions under which we 
obtain real-valued solutions for the longitudinal wave 
number p (In the following we refer to the TE excitation 
and the superscript TE is hereto after dropped.) 

Rewriting Eq, (3) more explicitly for the ENG-MNG 
waveguide of Fig. 1, we obtain: 

Due to the monotonic behavior and limited variation of 
the hyperbolic tangent functions with real argument in Eq. 
(9, we expect to observe interesting dispersion 
characteristics. First, we notice that if for the TE case Jo, 
and p2 have the same sign, Eq. (5) cannot have any real- 
valued solution for p This is not surprising, since for 
the case of the ENG-ENG pair or the MNG-MNG pair, 
where 4 and & have the same sign, the wave number in 
the bulk paired materials is always imaginay. However, 
when we have a so-called “conjugate” pair, i.e., a pair of 
ENG and MNG slabs, in this waveguide, both sides of Eq. 
(5) have the same sign, and thus it is possible to have a 
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real-valued solution for p from Eq. (5). This is 
consistent with our previous findings on free-space plane 
wave interaction with a pair of ENG-MNG slabs [S], in 
which we have shown the interesting “resonance” 
behavior between the two slabs. In order to gain some 
physical insights into the possible real-valued solutions of 
Eq. (5), let us assume that the parameters of the ENG and 
MNG slabs, i.e., &, 4, &, and E, are given at the 
frequency of interest, and that the thickness of the ENG 
slab d, is known and fixed. We then wish to find d, such 
that p attains a specific real value. This can be found by 
rearranging Eq. (5) as 

d, = 

Obviously, a physical solution for d, exists only if the 
argument of the inverse hyperbolic tangent function in the 
above equation is less than unity. But when this condition 
is fulfilled, the solution for d, is unique due to the 
monotonic (non-periodic) behavior of the hyperbolic 
tangent function. Specifically, for a given set of 
parameters for the ENG and MNG slabs and a fixed d, , 
there may only be one value for d, if a specific real value 
for /3 is desired. Furthermore, the field components vary 
as hyperbolic sinusoidal functions as shown in Eqs. (1) 
and (2), and they are mostly concentrated around the 
ENG-MNG interface. These features are in sharp contrast 
with those of propagating modes in a conventional 
waveguide filled with a pair of DPS slabs or a waveguide 
filled with the DPS-DNG paired slabs [5],[6], where one 
can have many solutions for d, due to the multi- 
valuedness/periodic behavior of the interior fields on the 
tramver~e plane of the waveguide. 

Figure 2 presents the TE dispersion diagram of such an 
ENG-MNG waveguide for two different sets of material 
parameters. One striking feature of these diagrams, as 
already underlined, is the single-valuedness of p for a 
given set of d, and d,, unlike the case of ordinary 
waveguides where one may find multiple real values for 
wave number for a given dimension of a waveguide and 
the corresponding figure would be multiple-branched. In 
order to discuss these figures, we first analyze some 
special limits. At one extreme, let us assume d, and d, 
to be very large. Eq. (5) will then be simplified as 

Jlkll2+P’ t/ii’ 
(7) 

which is independent of the thicknesses of the slabs and 
has the following solutions for p : 

Fig. 2. Dispersion diagram presenting the relationship among 

d, , d, , and real-valued /3 , as described in Eq. (5). for two sets 
of parameters at a fixed frequency of interest: (a) when 
q=-5$, &=2po, &>=2E,, &=-&I and (b) when 

q=-2Eo, p,=&, EI=3Eo, j4=-2/&,. 

p= m/w. (8) 

With proper choices of material parameters, fi can be a 

real-valued quantity, and then it represents the wave 
number of the Zenneck wave that can exist along the 
interface of the two semi-infinite lossless ENG and MNG 
media. This can be seen in Fig. 2b, in which the material 
parameters are chosen such that the Zenneck wave can 
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exist. We note that for the limit of very large d, and d, , 

the wavenumber p is shown to approach the value given 

in Eq. (8). It is interesting to note that this expression is 
identical to the corresponding wave number we addressed 
in [9] for the Zenneck wave along a DPS-DNG interface. 

Another limit is for the case of thin layers. If the 
thicknesses d, and d, are taken to be very small, Fq. (5) 

will be expressed approximately as 

414 =I&llllr,l, (9) 

an expression that is effectively independent of p. In 
such a limit, the wave number of the guided mode can 
essentially be any real value, as can be seen in Figs. 2a 
and 2b around the region where d, 0 and d, 0. I” 

such a waveguide, no matter how thin these layers are (as 
long as they satisfy Eq. (9)), one (and only one) 
propagating mode can exist. In other words, this 
waveguide does not have a “cut-off’ thickness below 
which no mode can propagate, analogously to a DPS- 
DNG thin cavity [5]. 

Another interesting feature to note in Fig. 2 is that for 
p = 0, which is the case of a l-dimensional cavity filled 
with the ENG-MNG pair, if d, is chosen to be large, d, 

will approach a finite limit given as 

Depending on the choice of the material parameters, for a 
fixed d, , as p increases from zero the thickness d, either 

becomes greater than the value shown in Eq. (IO) or less 
than it, as can be seen in Figs. 2a and 2b, respectively. 
Moreover, it is imponant to underline that the mono- 
modal characteristics of such a waveguide is strikingly 
independent of its total thickness. For instance, from Fig. 
2a, we can see that for a given b and a specific allowable 

d, , thickness d, can be chosen arbitrarily large, resulting 

in a thick waveguide. But still one single mode is 
propagating in such a thick waveguide. This feature, not 
present in a conventional waveguide, for which increasing 
the thickness leads to the possibility of having multiple 
propagating modes, can be potentially employed for some 
applications. Finally, one notes that in the dispersion 
diagrams in Fig. 2b there is a curved line beyond which 
the diagram “stops”. This is due to the fact that beyond 
this boundary, the real solution for Eq. (6) does not exist. 

V. CONCLUSION 

Our analysis has shown that a parallel-plate waveguide 
filled with a pair of parallel layers of lossless epsilon- 
negative and mu-negative materials may possess only a 

single propagating mode with essentially no restriction on 
the waveguide thickness. So a thick waveguide of this 
kind is always mono-modal, contrary to a conventional 
waveguide. In the limit of small thickness, this waveguide 
may always have a propagating mode, thus has no cut-off 
thickness. 

Such a waveguide may find interesting applications in 
design of single-mode fibers with less restriction and more 
flexibility on the fiber thickness. 

Ul 

121 

131 

[41 

151 

[61 

L71 

@I 

L91 

REFERENCES 

V. G. Veselago, “The electrodynamics of substances with 
simultaneously negative values of E and /I ,” Soviet 
Physics Uspekhi, vol. 10, No. 4, pp. 509.514, 1968 [in 
Russian Usp. Fiz. Nauk, 92, pp. 517.526, 19671. 
R. W. Ziolkowski, and E. Heyman, “Wave propagation in 
media having negative penuittivity and permeability,” 
PhysicalReview E., vol. 64. No. 5,056625,2001. 
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental 
verification of a negative index of refraction,” Science, vol. 

292, No. 5514, pp. 77.79,200I. 
J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, 
“Magnetism from conductors and enhanced nonlinear 
phenomena,” IEEE Transactions on Microwave Theory and 

Tech,,., vol. 47, No. 11, pp. 2075-2081, Nov. 1999. 
N. Engheta, “An ides for thin subwavelength cavity 
resonators using metamaterials with negative penoittivity 
and permeability,” IEEE Antennas and Wireless 

Propagation Letters, vol. I, No. I, pp. 10-13.2002. 
N. Engheta, “Ideas for potential applications of 
metamaterials with negative perminivity and permeability,” 
a chapter in Advances in Electromagnetics of Complex 
Media and Meramarerials, NATO Science Series, (S. 
Zouhdi, A. H. Sihvola, M. Arsalane, editors), Kluwer 
Academic Publishers, pp. 19-37, 2002. 
D. R. Fredkin and A. Ron, “‘Effectively left-handed 
(negative index) composite material,” Applied Physics 

Lerrers, Vol. 81, No. 10, pp. 1753.1755,2 Sept. 2002. 
A. Alh and N. Engheta, “Pairing an Epsilon-Negative Slab 
with a Mu-Negative Slab: Resonance, Tunneling and 
Transparency,” submitted to IEEE Transactions on 

Antennas and Propagation, in review. 
A. Alb and N. Eugheta, “Radiation from a Traveling-Wave 
Current Sheet at the Interface between a Conventional 
Material and a Material with Negative Permittivity and 
Permeability,” in M,crowave and Oprical Technology 

Laws, Vol. 35, No. 6, pp. 460.463, December 20, 2002 

316 


	MTT025
	Return to Contents


